APPLICATION OF DERIVATIVES(MATHEMATICS)

Sombir Sharma
0

 

APPLICATION OF DERIVATIVES

(SUM 25 TO 28)

ALL EDUCATION BOARD


uestion 26
A conical  vessel whose height is `10` `meter` and the radius of whose base is `5` meter is being filled with water at the uniform rate of `1.5` cubic `meter`/`min`Find the rate at which the the level of water in  the vessel is rising when the depth is `4` meteres.

Answer
      `ABC` is the cone with radius `OC`=`5`` m` and height `OA`=`10` `m`
At any time `t` ,Let `V `be the volume of water .Now the vessel is being filled with water at the uniform rate of `1.5` `m^{3}`/`min` .



fig4



Rate of change of volume is 

` \frac{3}{2} m^{3}`/`min` ,    `\frac{dV}{dt}`= `\frac{3}{2}`.At that instant suppose the water forms a cone whose height `D`=`h` and radius `DE`=`r` `meters`.

Now  `\Delta`'s `OCA and DEA are similar

so  `\frac{DE}{OC}`= `\frac{DA}{OA}` 

` \Rightarrow `        `\frac{r}{5}`= `\frac{h}{10}`  

` \Rightarrow `      `r`=` \frac{h}{2}`

Now      `V`= ` \frac{1}{3} \pi  r^{2} h`

= `\frac{1}{3} \pi  ( \frac{h}{2} )^{2} .h`

= `\frac{ \pi  h^{3} }{12} `

                            `[r= \frac{h}{2} ]`

so   `\frac{dV}{dt}`= `\frac{3 \pi  h^{2} }{12}. \frac{dh}{dt}`

` \Rightarrow `    `\frac{3}{2}`= `\frac{ \pi  h^{2} }{4}. \frac{dh}{dt}`

` \Rightarrow `       `\frac{dh}{dt}`= `\frac{6}{ \pi  h^{2} }`    

                                               ` [ \frac{dV}{dt}=\frac{3}{2} ] `


when `h`=`4`,Rate of change (increase) in water level

= `\frac{6}{ \pi  \times 16}` = ` \frac{3}{8 \pi }meters`/ `minute`

 

       
Question 27
From a cyclinderical drum containing oil and kept vertical ,the oil is leaking at the rate of `10` `cm^{3}`/`sec` .If the radius of the drum is `10` `cm` and height is `50``cm`,find the rate at which level of oil is changing when oil level is  `20` `cm`.

Answer
Let `r`be the radius ,`h` be the height and `V` be the volume of the cylindrical drum at any time `t`

`v`= `\pi  r^{2} h`

Now it is given that `r`=`10``cm`

`V`= `\pi  \times  (10)^{2}  \times h`=`100` \pi h

` \Rightarrow `       `\frac{dV}{dt}`=`100 \pi  \frac{dh}{dt}`
                                                 ..................(1)

The oil is leaking from the drum at the rate of `10` ` cm^{3}`/`sec`

Rate of change (decrease) of volume =   `10` ` cm^{3}`/`sec`


 `\frac{dV}{dt}`=`-10`

                      [ `\frac{dV}{dt}` is `- \nue` ` V`   decrease      as t  increse ] 


         `-10`=`100 \pi  \frac{dh}{dt}`                      {using   1} 


` \Rightarrow `    `\frac{dh}{dt}`=` \frac{-10}{100 \pi }`


=`- \frac{1}{10 \pi } ``cm`/`sec`

Hence rate of change of oil level is  `\frac{1}{10 \pi }``cm`/`sec`   





Quetion 28

A water tank has the shape of an inverted right circular cone with its axis vertical and vertex lowermost Its semi vertical angle is  `tan^{-1} (0.5)`.Water is poured into it at a constant rate of `5` cubic metre per hour .Find the rate at which the level of the water is rising at the instant when the depth of water in the tank is `4m`.

Answer
Let `ABC` represent the water tank which is in shap of a right circular cone.

`r`be the radius ,`h` be the height and  `\alpha ` 

be the semi vertical angle of the cone `ABC`.then

`tan \alpha` = `\frac{r}{h}`

` \Rightarrow `    ` \alpha `=` tan^{-1}( \frac{r}{h})`




now,           ` \alpha `=`  tan^{-1}(0.5)`

                                         `[Given]`

` \frac{r}{h}`=`0.5`

` \Rightarrow ` `r`=` \frac{1}{2}h`

Let `V` be the volume of the cone 

`V`=`\frac{1}{3} \pi  r^{2}h`

` \Rightarrow `         `V`= `\frac{1}{3} \pi ( \frac{1}{2}h)^{2}.h`

= `\frac{ \pi }{2} h^{3}`       


now water is poured in to cone at a constant rate of `5 m^{3}`/`h`

        ` \frac{dV}{dt}` =`5 m^{3}`/`h`


` \Rightarrow `     `\frac{d}{dt}( \frac{ \pi }{12} h^{3})=`5`

` \Rightarrow `        ` \frac{ \pi }{12}3 h^{2}. \frac{dh}{dt}`=`5`     

` \Rightarrow `     `\frac{ \pi  h^{2} }{4}. \frac{dh}{dt} =`5` 

` \Rightarrow `        `\frac{dh}{dt}`=` \frac{20}{ \pi  h^{2}}` 

when `h`=`4m`,the rate of change of volume 

=` \frac{20}{ \pi  (4)x^{2} }`


=  `\frac{20}{16} \times  \frac{7}{22}`


=` \frac{35}{88} `m`/`hr`

Hence the rate of change of water level is  `\frac{35}{88}  `m`/ `hr` 




Post a Comment

0Comments

Please Select Embedded Mode To show the Comment System.*